Background
Renal cell carcinoma (RCC) contributed to 403,262 new cases worldwide in 2018, which constitutes 2.2% of global cancer, nevertheless, sunitinib, one of the major targeted therapeutic agent for RCC, often developed invalid due to resistance. Emerging evidences suggested sunitinib can impact tumor environment which has been proven to be a vital factor for tumor progression.
Methods
In the present study, we used ssGSEA to extract the immune infiltrating abundance of clear cell RCC (ccRCC) and normal control samples from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65615, TCGA, and GTEx; key immune cells were determined by Student's t‐test and univariable Cox analysis. Co‐expression network combined with differentially expressed analysis was then applied to derive key immune‐related genes for ccRCC, followed by the identification of hub genes using differential expression analysis. Subsequently, explorations and validations of the biological function and the immune‐related and sunitinib‐related characteristics were conducted in KEGG, TISIDB, Oncomine, ICGC, and GEO databases.
Results
We refined immature dendritic cells and central memory CD4 T cells which showed associations with sunitinib and ccRCC. Following, five hub genes (CRYBB1, RIMBP3C, CEACAM4, HAMP, and LYL1) were identified for their strong relationships with sunitinib and immune infiltration in ccRCC. Further validations in external data refined CRYBB1, CEACAM4, and HAMP which play a vital role in sunitinib resistance, immune infiltrations in ccRCC, and the development and progression of ccRCC. In conclusion, our findings could shed light on the resistance of sunitinib in ccRCC and provide novel biomarkers or drug targets for ccRCC.