Jasmonates are important phytohormones that regulate plant tolerance to biotic and abiotic stresses, and developmental processes. Distinct jasmonates in different plant lineages activate a conserved signalling pathway that mediates these responses: dinor-12-oxo-phytodienoic acid (dn-OPDA) isomers in bryophytes and lycophytes, and JA-Ile in most vascular plants. In many cases, the final responses triggered by these phytohormones depend on the accumulation of specialized metabolites. To identify compounds regulated by the dn-OPDA pathway in the liverwort Marchantia polymorpha, untargeted metabolomic analyses were carried out in response to wounding, a stress that activates the dn-OPDA pathway. A previously unreported group of molecules was identified from these analyses: dn-OPDA-amino acid conjugates (dn-OPDA-aas). Their accumulation after wounding and herbivory was confirmed by targeted metabolic profiling in Marchantia and in all species in which we previously detected dn-iso-OPDA. Mutants in GRETCHEN-HAGEN 3A (MpGH3A) failed to accumulate dn-OPDA-aa conjugates and showed a constitutive activation of the OPDA pathway and increased resistance to herbivory. Our results show that dn-iso-OPDA bioactivity is reduced by amino acid conjugation. Therefore, jasmonate conjugation in land plants plays dichotomous roles: jasmonic acid (JA) conjugation with isoleucine (Ile) produces the bioactive JA-Ile in tracheophytes, whereas conjugation of dn-iso-OPDA with different amino acids deactivates the phytohormone in bryophytes and lycophytes.