In this short review we describe the process of designing a superconducting circuit device for quantum information applications. We discuss the factors that must be considered to implement a desired effective Hamiltonian on a device. We describe the translation between a device’s physical layout, the circuit graph, and the effective Hamiltonian. We go over the process of electromagnetic simulation of a device layout to predict its behavior. We also discuss concerns such as connectivity, crosstalk suppression, and radiation shielding, and how they affect both on-chip design and enclosure structures. This paper provides an overview of the challenges in superconducting quantum circuit design and acts as a starter document for researchers working on any of these challenges.