Isothermal titration calorimetry (ITC) is a powerful classical method that enables researchers in many fields to study the thermodynamics of molecular interactions. Primary ITC data comprise the temporal evolution of differential power reporting the heat of reaction during a series of injections of aliquots of a reactant into a sample cell. By integration of each injection peak, an isotherm can be constructed of total changes in enthalpy as a function of changes in solution composition, which is rich in thermodynamic information on the reaction. However, the signals from the injection peaks are superimposed by the stochastically varying time-course of the instrumental baseline power, limiting the precision of ITC isotherms. Here, we describe a method for automated peak assignment based on peak-shape analysis via singular value decomposition in combination with detailed least-squares modeling of local pre- and post-injection baselines. This approach can effectively filter out contributions of short-term noise and adventitious events in the power trace. This method also provides, for the first time, statistical error estimates for the individual isotherm data points. In turn, this results in improved detection limits for high-affinity or low-enthalpy binding reactions and significantly higher precision of the derived thermodynamic parameters.