This paper studies the closed-loop equilibrium reinsurance-investment problem with insider information and default risk. The financial market consists of one risky asset, one defaultable bond, and one risk-free asset. The surplus process is governed by a jump-diffusion process. Two kinds of dependencies between the insurance market and the financial market are considered. In addition, the insurer has some extra claims information available from the beginning of the trading interval. The objective of the insurer is to choose a time-consistent reinsurance-investment strategy so as to maximize the expected terminal wealth while minimizing the variance of the terminal wealth. Since this problem is time-inconsistent, using closed-loop control approach from the perspective of game theory, we establish the extended Hamilton–Jacobi–Bellman (HJB) equations for the postdefault case and the predefault case, respectively. Closed-form solutions for the closed-loop equilibrium reinsurance-investment strategy and the corresponding value function are obtained. Finally, we provide a series of numerical examples to illustrate the effects of insider information and other some important model parameters on the closed-loop equilibrium reinsurance and investment strategies. The result analyses reveal some interesting phenomena and provide useful guidances for reinsurance and investment in reality.