Abstract:Open source software is becoming crucial in the design and testing of quantum algorithms. Many of the tools are backed by major commercial vendors with the goal to make it easier to develop quantum software: this mirrors how well-funded open machine learning frameworks enabled the development of complex models and their execution on equally complex hardware. We review a wide range of open source software for quantum computing, covering all stages of the quantum toolchain from quantum hardware interfaces throug… Show more
Gaussian Boson Sampling (GBS) is a near-term platform for photonic quantum computing. Recent efforts have led to the discovery of GBS algorithms with applications to graph-based problems, point processes, and molecular vibronic spectra in chemistry. The development of dedicated quantum software is a key enabler in permitting users to program devices and implement algorithms. In this work, we introduce a new applications layer for the Strawberry Fields photonic quantum computing library. The applications layer provides users with the necessary tools to design and implement algorithms using GBS with only a few lines of code. This paper serves a dual role as an introduction to the software, supported with example code, and also a review of the current state of the art in GBS algorithms.1 This document refers to Strawberry Fields version 0.12.Full documentation is available online at strawberryfields.readthedocs.io and the code is available at github.com/XanaduAI/ strawberryfields.
Gaussian Boson Sampling (GBS) is a near-term platform for photonic quantum computing. Recent efforts have led to the discovery of GBS algorithms with applications to graph-based problems, point processes, and molecular vibronic spectra in chemistry. The development of dedicated quantum software is a key enabler in permitting users to program devices and implement algorithms. In this work, we introduce a new applications layer for the Strawberry Fields photonic quantum computing library. The applications layer provides users with the necessary tools to design and implement algorithms using GBS with only a few lines of code. This paper serves a dual role as an introduction to the software, supported with example code, and also a review of the current state of the art in GBS algorithms.1 This document refers to Strawberry Fields version 0.12.Full documentation is available online at strawberryfields.readthedocs.io and the code is available at github.com/XanaduAI/ strawberryfields.
“…The software side is also moving at fast pace (see Fingerhuth et al [15] for a Review of general quantum com-puting software). There now exist several platforms for hybrid quantum-classical computation which are specifically dedicated to ML.…”
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be thought of as machine learning models with remarkable expressive power. This Review presents components of these models and discusses their application to a variety of data-driven tasks such as supervised learning and generative modeling. With experimental demonstrations carried out on actual quantum hardware, and with software actively being developed, this rapidly growing field could become one of the first instances of quantum computing that addresses real world problems.
“…Concerning the software languages and tools, the scenario is rather fragmented: Ref. [45] provides an overview of open-source software projects and encourages the coalition of larger communities.…”
Section: A Future Application Scenario: Optical Quantum Twinmentioning
Over the last few years, we have witnessed an impressive growth of data traffic and a progressive Digital Transformation of Industry and Society: the deployment of the ultra-broadband and low latency network infrastructures (e.g., 5G) are leading to a global digitalization of several domains. These techno-economic trends are expected to continue and even accelerate in the next decade, at end of which, 6G and smart networks and services will be exploited. Innovation will continue to drive the global economy into the next decade. This paper draws some technology trends and applications scenarios for this horizon, where Quantum Optical Communications are likely to disrupt Information and Communications Technology (ICT) and Telecommunications. Among the enabling technologies and solutions moving in this direction, this paper briefly addresses: quantum optical switching and computing, THz-to-optical conversions and advanced metamaterials for smart radio-optical programmable environments and Artificial Intelligence. The paper concludes with the description of a future application scenario, called Quantum Optical Twin, where the above Quantum Optical Communications technologies are exploited to provide services such as: ultra-massive scale communications for connected spaces and ambient intelligence, holographic telepresence, tactile Internet, new paradigms of brain computer interactions, innovative forms of communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.