2020
DOI: 10.48550/arxiv.2012.06168
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

OpenHoldem: A Benchmark for Large-Scale Imperfect-Information Game Research

Abstract: Owning to the unremitting efforts by a few institutes, significant progress has recently been made in designing superhuman AIs in No-limit Texas Hold'em (NLTH), the primary testbed for large-scale imperfect-information game research. However, it remains challenging for new researchers to study this problem since there are no standard benchmarks for comparing with existing methods, which seriously hinders further developments in this research area. In this work, we present OpenHoldem, an integrated toolkit for … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 20 publications
0
1
0
Order By: Relevance
“…The first experiment proved our method's feasibility in NLTH games against a weak opponent. In the next experiment, we introduced four stronger agents adopted from an open-source NLTH platform [30]. They were designed according to specific rules and characterized by human-like styles, namely Tight Aggressive (TA), Tight Passive (TP), Loose Aggressive (LA), and Loose Passive (LP).…”
Section: Learning To Exploit Baseline Opponentsmentioning
confidence: 99%
“…The first experiment proved our method's feasibility in NLTH games against a weak opponent. In the next experiment, we introduced four stronger agents adopted from an open-source NLTH platform [30]. They were designed according to specific rules and characterized by human-like styles, namely Tight Aggressive (TA), Tight Passive (TP), Loose Aggressive (LA), and Loose Passive (LP).…”
Section: Learning To Exploit Baseline Opponentsmentioning
confidence: 99%