Triboelectric nanogenerators (TENGs) have attracted great interests in the development of sustainable energies and intelligent society. However, a big challenge for TENGs in practical applications is the unavoidable external mechanical abrasion and/or contaminant adsorption on the triboelectric materials, which leads to the significant decrease of the durability of TENGs and is urgently needed to be addressed. There are already a series of interesting progresses on the topic of the TENGs' durability. In this study, reviewing the durability of TENGs via both the advanced materials/structure designing and the novel surface/interface engineering is focused upon, which includes choosing basic TENG materials, improving composites performance, optimizing structures, and designing triboelectric surfaces and interfaces. To get a better understanding of the durability of TENGs in published studies, the quantifiable levels of service life are also summarized including operation cycles, time, friction coefficient, and wear loss of triboelectric materials, where the boosting mechanisms are also discussed and summarized. Finally, the challenges as well as key strategies toward high durable TENGs are presented.