Si1-xSnx and Si1-x-yGexSny polycrystalline thin layers were grown using Sn nanodots as crystal nuclei. Si1-xSnx crystallization occurred around Sn nanodots, and the substitutional Sn content was estimated as high as 1.5%. In the case of the poly-Si1-x-yGexSny, Ge and Si were deposited simultaneously on the Sn nanodots, however, Ge was preferentially incorporated into the Sn nanodots, resulting in the formation of the poly-Si1-x-yGexSny with amorphous Si residue. It was found that the poly-Si1-xSnx formed by the Sn nanodots mediated formation can be used as the new virtual substrate to be alloyed with Ge, namely the 2step formation process consisting of poly-Si1-xSnx crystallization and Ge alloying with the Si1-xSnx is the effective formation process for the poly-Si1-x-yGexSny formation. This non-equilibrium process with achieving crystallization resulted in the substitutional Si and Sn content in the as-grown poly-Si1-x-yGexSny as high as 19.4% and 3.4%, respectively.