Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The impact of oil leakages in a turbine on the main power system parameters is investigated in reactive hydraulic turbines with adjustable-blade runners (Kaplan turbines) installed at Maynskaya, Nizhne-Bureiskaya and Vilyuyskaya hydroelectric power plants. The main theoretical relations and conclusions were obtained by the methods of mathematical simulation and integral calculations in the MATLAB software environment. A method is proposed for monitoring leakages in the housing of an adjustable-blade runner and smoothing the fluctuations of various parameters (amplitude, rotational velocity, phase angle, active power and generator current) of the power system in the case of oil leak-ages. The control is performed by means of a sensor installed in the runner, a fiber-optic cable and an optical-electrical converter located along the shaft from the runner blades to the oil receiver of the corresponding hydraulic unit. The performed analysis of the obtained mathematical model (frequency response and Nyquist plots were built) relative to the basic parameters of the electrical energy generated by a hydraulic unit showed that the proposed method of monitoring oil leakages contributes to an increase in the operational stability of a hydraulic unit. When constructing the model, the following parameters of the hydraulic unit were taken into account: rotational angle of runner blades and opening angle of hydraulic turbine guide vanes. The developed block diagram can be used to compare variations in the parameters both without oil leakage control and taking into account the automated control system proposed by the authors. It is shown that the obtained logarithmic Nyquist plot can be used to monitor variations in the amplitude, as well as its smoothening, both under normal conditions and taking into account oil leakages in the hydraulic turbine housing.
The impact of oil leakages in a turbine on the main power system parameters is investigated in reactive hydraulic turbines with adjustable-blade runners (Kaplan turbines) installed at Maynskaya, Nizhne-Bureiskaya and Vilyuyskaya hydroelectric power plants. The main theoretical relations and conclusions were obtained by the methods of mathematical simulation and integral calculations in the MATLAB software environment. A method is proposed for monitoring leakages in the housing of an adjustable-blade runner and smoothing the fluctuations of various parameters (amplitude, rotational velocity, phase angle, active power and generator current) of the power system in the case of oil leak-ages. The control is performed by means of a sensor installed in the runner, a fiber-optic cable and an optical-electrical converter located along the shaft from the runner blades to the oil receiver of the corresponding hydraulic unit. The performed analysis of the obtained mathematical model (frequency response and Nyquist plots were built) relative to the basic parameters of the electrical energy generated by a hydraulic unit showed that the proposed method of monitoring oil leakages contributes to an increase in the operational stability of a hydraulic unit. When constructing the model, the following parameters of the hydraulic unit were taken into account: rotational angle of runner blades and opening angle of hydraulic turbine guide vanes. The developed block diagram can be used to compare variations in the parameters both without oil leakage control and taking into account the automated control system proposed by the authors. It is shown that the obtained logarithmic Nyquist plot can be used to monitor variations in the amplitude, as well as its smoothening, both under normal conditions and taking into account oil leakages in the hydraulic turbine housing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.