We show that quotients of generalized effect algebras by Riesz ideals preserve some important special properties, e.g., homogeneity and hereditary Riesz decomposition properties; moreover, quotients of generalized orthoalgebras, weak generalized orthomodular posets, generalized orthomodular lattices and generalized MV-algebras with respect to Riesz ideals belong to the same class. We give a necessary and sufficient condition under which a Riesz ideal I of a generalized effect algebra P is a Riesz ideal also in the unitization E of P . We also study relations between Riesz ideals and central elements in GEAs and in their unitizations. In the last section, we demonstrate the notion of Riesz ideals by some illustrative examples.