2022
DOI: 10.48550/arxiv.2201.00236
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Operator Deep Q-Learning: Zero-Shot Reward Transferring in Reinforcement Learning

Abstract: Reinforcement learning (RL) has drawn increasing interests in recent years due to its tremendous success in various applications. However, standard RL algorithms can only be applied for single reward function, and cannot adapt to an unseen reward function quickly. In this paper, we advocate a general operator view of reinforcement learning, which enables us to directly approximate the operator that maps from reward function to value function. The benefit of learning the operator is that we can incorporate any … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?