2022
DOI: 10.1112/jlms.12565
|View full text |Cite
|
Sign up to set email alerts
|

Operator θ$\theta$‐Hölder functions with respect to ∥·∥p$\Vert \cdot \Vert _p$, 0<p⩽∞$0&lt; p\leqslant \infty$

Abstract: Let θ∈false(0,1false)$\theta \in (0,1)$ and false(scriptM,τfalse)$({\mathcal {M}},\tau )$ be a semifinite von Neumann algebra. We consider the function spaces introduced by Sobolev (J. London Math. Soc. (2) 95 (2017), 157–176; Geom. Funct. Anal. 27 (2017), 676–725) (denoted by Sd,θ$S_{d,\theta }$), showing that there exists a constant d>0$d>0$ depending on p$p$, 0 Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
references
References 79 publications
0
0
0
Order By: Relevance