2017
DOI: 10.2298/fil1714579d
|View full text |Cite
|
Sign up to set email alerts
|

Operators with compatible ranges

Abstract: A bounded operator T on a finite or infinite-dimensional Hilbert space is called a disjoint range (DR) operator if R(T ) ∩ R(T * ) = {0}, where T * stands for the adjoint of T , while R(·) denotes the range of an operator. Such operators (matrices) were introduced and systematically studied by Baksalary and Trenkler, and later by Deng et al. In this paper we introduce a wider class of operators: we say that T is a compatible range (CoR) operator if T and T * coincide on R(T ) ∩ R(T * ). We extend and improve s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?