In order to keep and/orexpand its share of the wireless communication market and decrease churn, it is important for network operators to keep their users (clients) satisfied. The problem to be solved is how to increase the number of satisfied non-real time (NRT) and real time (RT) users in the downlink of the radio access network of an orthogonal frequency division multiple access system. In this context, the present work proposes a method to solve the referred problem using a unified radio resource allocation (RRA) framework based on utility theory. This unified RRA framework is particularized into two RRA policies that use sigmoidal utility functions based on throughput or delay and are suitable for NRT and RT services, respectively. It is demonstrated by means of system-level simulations that a step-shaped sigmoidal utility function combined with a channel-aware opportunistic scheduling criterion is effective toward the objective of user satisfaction maximization.