Silicon nitride ceramics were prepared from a high‐purity silicon powder doped with 2 mol% Y2O3 and 5 mol% MgO as sintering additives via a route of sintering of reaction‐bonded silicon nitride (SRBSN). The materials sintered at 1900°C for 3, 6, 12, and 24 h had thermal conductivities of 109, 125, 146, and 154 W/m/K, and four‐point bending strengths of 786, 676, 608, and 505 MPa, respectively. The fracture toughness values, determined by the single‐edge‐precracked‐beam (SEPB) method, were 8.4, 8.6, 9.7, and 10.7 MPa m1/2 for the materials sintered for 3, 6, 12, and 24 h, respectively, which were similar to the results measured by the chevron‐notched‐beam (CNB) test method. The materials sintered for longer times (12 and 24 h) showed stronger R‐curve behaviors over longer range of crack extension, in comparison with the materials sintered for shorter times (3 and 6 h).