In the context of global efforts to transition toward renewable energy and reduce greenhouse gas emissions, geothermal energy is increasingly recognized as a viable and sustainable option. This paper presents a comprehensive assessment derived from a subset of a larger sample collection within the Dunántúli Group of the Pannonian Basin, Hungary, focusing on optimizing micro-computed tomography (µ-CT) resolution for analyzing pore structures in sandstone formations. By categorizing samples based on geological properties and selecting representatives from each group, the study integrates helium porosity and gas permeability measurements with µ-CT imaging at various resolutions (5 µm, 2 µm, and 1 µm). The findings reveal that µ-CT resolution significantly affects the discernibility and characterization of pore structures. Finer resolutions (2 µm and 1 µm) effectively uncovered interconnected pore networks in medium- to coarse-grained sandstones, suggesting favorable properties for geothermal applications. In contrast, fine-grained samples showed limitations in geothermal applicability at higher resolutions due to their compact nature and minimal pore connectivity, which could not be confidently imaged at 1 µm. Additionally, this study acknowledges the challenges in delineating the boundaries within the Dunántúli Group formations, which adds a layer of complexity to the characterization process. The research highlights the importance of aligning µ-CT findings with geological backgrounds and laboratory measurements for accurate pore structure interpretation in heterogeneous formations. By contributing vital petrophysical data for the Dunántúli Group and the Pannonian Basin, this study provides key insights for selecting appropriate µ-CT imaging resolutions to advance sustainable geothermal energy strategies in the region. The outcomes of this research form the basis for future studies aimed at developing experimental setups to investigate physical clogging and enhance geothermal exploitation methods, crucial for the sustainable development of geothermal resources in the Pannonian Basin.