Nickel(II) compounds are established human carcinogens, but the molecular mechanisms underlying their activity are only partially known. One mechanism may include mediation by nickel of promutagenic oxidative DNA damage that depends on Ni(II) binding to chromatin. To characterize such binding at the histone moiety of chromatin, we synthesized the peptide CH3CO-Cys-Ala-Ile-His-NH2 (L), a model of the evolutionarily conserved motif in histone H3 with expected affinity for transition metals, and evaluated its reactivity toward Ni(II). Combined spectroscopic (UV/vis, CD, NMR) and potentiometric measurements showed that, at physiological pH, mixtures of Ni(II) and L yielded unusual macrochelate complexes, NiL and NiL2, in which the metal cation was bound through Cys and His side chains in a square-planar arrangement. Above pH 9, a NiH-3L complex was formed, structurally analogous to typical square-planar nickel complexes. These complexes are expected to catalyze oxidation reactions, and therefore, coordination of Ni(II) by the L motif in core histone H3 may be a key event in oxidative DNA base damage observed in the process of Ni(II)-induced carcinogenesis.