2020
DOI: 10.1103/physrevb.101.195304
|View full text |Cite
|
Sign up to set email alerts
|

Optical and electronic properties of low-density InAs/InP quantum-dot-like structures designed for single-photon emitters at telecom wavelengths

Abstract: Due to their band-structure and optical properties, InAs/InP quantum dots (QDs) constitute a promising system for single-photon generation at the third telecom window of silica fibers and for applications in quantum communication networks. However, obtaining the necessary low in-plane density of emitters remains a challenge. Such structures are also still less explored than their InAs/GaAs counterparts regarding optical properties of confined carriers. Here, we report on the growth via metal-organic vapor phas… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

3
19
1
2

Year Published

2021
2021
2023
2023

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 24 publications
(25 citation statements)
references
References 63 publications
3
19
1
2
Order By: Relevance
“…The temperature shift of PL modes A–F follow the bandgap evolution of QD material quite nicely except the mode A’. This observation is in contrast to the previously observed temperature-driven PL modes evolution in multimodal-distributed SK InAs/InP QDs, where the PL band energy deviated from the predicted bandgap shift [ 1 ]. The deviation, particularly at elevated temperatures, is mainly governed by a carrier redistribution process between different families of dots and among QDs of an individual family, shifting the mean energy of related PL mode either upward (due to the filling of large dots within the distribution), or downward (due to the carrier escape from higher to lower energy dots) [ 48 ].…”
Section: Resultscontrasting
confidence: 99%
See 2 more Smart Citations
“…The temperature shift of PL modes A–F follow the bandgap evolution of QD material quite nicely except the mode A’. This observation is in contrast to the previously observed temperature-driven PL modes evolution in multimodal-distributed SK InAs/InP QDs, where the PL band energy deviated from the predicted bandgap shift [ 1 ]. The deviation, particularly at elevated temperatures, is mainly governed by a carrier redistribution process between different families of dots and among QDs of an individual family, shifting the mean energy of related PL mode either upward (due to the filling of large dots within the distribution), or downward (due to the carrier escape from higher to lower energy dots) [ 48 ].…”
Section: Resultscontrasting
confidence: 99%
“…In the case of SK InAs/InP QDs, the carrier transfer can happen through either: (i) lateral coupling, namely carrier tunneling between QD excited states in their dense ensemble [ 49 , 50 ]; (ii) hybrid QD-WL states [ 51 , 52 ]; (iii) indirect transitions between the WL and QD energy levels [ 53 , 54 ]; (iv) carrier re-excitation to the WL or barrier material due to the rising phonon bath, and subsequent redistribution among QDs with higher confinement energy [ 1 ]. Accordingly, the lack of the PL mode energy deviation for the studied QDs concentrated in A–F distributions suggests the absence of direct coupling between the dots and an inefficient mutual carrier exchange which could be mediated only through the barrier states due to the absence of a WL.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…В настоящее время усилия многих исследовательских групп направлены на поиск методов формирования полупроводниковых квантовых точек низкой плотности, которые могут эффективно использоваться в качестве активной среды однофотонных излучателей для таких приложений как квантовая криптография [1][2][3], для различных схем квантовых вычислений [4][5], а также прецизионных измерений [6,7]. Разработаны различные технологические режимы эпитаксиального роста самоорганизующихся КТ или последующего отжига структуры, позволившие уменьшить плотность КТ InAs/InP до < 10 9 cm −2 [8], КТ InAs/InGaAsP/InP (100) до 1.3 • 10 9 cm −2 [9], КТ CdTe до 10 7 −10 8 cm −2 [10]. Также для создания КТ низкой плотности, применяется более сложный метод формирования с использованием ростовой поверхности предустановленной морфологии (site-controlled epitaxy) [11,12].…”
Section: Introductionunclassified
“…Недавно в работе [13] был предложен новый способ формирования полупроводниковых трехмерных островков при замещении фосфора на мышьяк в тонком слое InGaP (толщиной менее 3 nm) с использованием подложек GaAs. В этом случае на поверхности GaAs фор-мируются трехмерные островки InGaPAs/GaAs овальной формы, низкой плотности (∼ 1.3 • 10 10 cm −2 ), вытянутые вдоль направления [1][2][3][4][5][6][7][8][9][10] и излучающие в спектральном диапазоне вблизи 1 µm при комнатной температуре.…”
Section: Introductionunclassified