Cr doped Zn1-xCrxS nanorods with different concentration ratio (x=0, 0.01, 0.03, and 0.05) were successfully synthesized by hydrothermal method. The crystal microstructure, morphology, chemical composition, and optical and magnetic properties of the samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray energy dispersive spectrometry (XEDS), diffuse-reflectance spectroscopy (DRS), photoluminescence (PL) spectra, and the vibrating sample magnetometer (VSM). All the samples synthesized by this method exhibited single-phase wurtzite structure with good crystallization as demonstrated by XRD studies, which indicated that all Cr ions successfully substituted for the lattice site of Zn2+ and generated single-phase Zn1-xCrxS. DRS revealed the band gap of doped Zn1-xCrxS underwent blue shift compared to that of the bulk ZnS. PL spectra showed obvious ultraviolet emission peak at 375 nm and two blue emissions appear about 500 and 580 nm. The blue emissions intensity of doped samples improved with the increase of Cr concentration, comparing to pure ZnS. Magnetic measurements indicated that the undoped and doped ZnS nanorods exhibited well-defined ferromagnetic behavior at room temperature. The saturation magnetization weakened significantly with increasing Cr concentration comparing to pure ZnS and reached minimum for 3% Cr.