Spectral dependences of the transversal Kerr effect (TKE) as well as of the real and imaginary parts of the permittivity of InMnAs layers were studied. Pulsed laser ablation of Mn and InAs targets was used to form the layers on GaAs(100) substrates. Spectra of the optical constants and TKE depended substantially on layer fabrication conditions and testified to the presence of MnAs inclusions in the samples. The cross-sectional transmission electron microscopy revealed the presence of inclusions of size 10-40 nm in the layers. At room temperature a strong resonant band was observed in the TKE spectra of the InMnAs layers in the energy range of 0.5-2.2 eV. In this band the TKE was comparable in magnitude but opposite in sign to that in the strong ferromagnetic MnAs. The resonant character of the TKE spectra was explained by excitation of surface plasmons in the MnAs nanoclusters embedded in the InMnAs semiconductor host. Modelling the TKE spectra for (InAs)(1 - X):(MnAs)(X) nanocomposites in the effective-medium approximation (Maxwell-Garnett approximation) confirmed the assumption on the plasmon mechanism of the resonant enhancement of the transversal Kerr effect in the InMnAs layers.