This paper describes the design, fabrication, and characterization of the first MEMS scanning mirror with performance matching the polygon mirrors currently used for high-speed consumer laser printing. It has reflector dimensions of 8mm X 0.75mm, and achieves 80º total optical scan angle at an oscillation frequency of 5kHz. This performance enables the placement of approximately 14,000 individually resolvable dots per line at a rate of 10,000 lines per second, a recordsetting speed and resolution combination for a MEMS scanner. The scanning mirror is formed in a simple microfabrication process by gold reflector deposition and patterning, and through-wafer deep reactive-ion etching. The scanner is actuated by off-the-shelf piezo-ceramic stacks mounted to the silicon structure in a steel package. Device characteristics predicted by a mathematical model are compared to measurements.