Polarimetry is a noninvasive method that uses polarised light to assess biophysical characteristics of tissues. A series of incident polarisation states illuminates a biological sample, and analysis of sample-altered polarisation states enables polarimetric tissue assessment. The resultant information can, for example, help quantitatively differentiate healthy from pathologic tissue. However, most bio-polarimetric assessments are performed using free-space optics with bulky optical components. Extension to flexible fibre-based systems is clinically desirable, but is challenging due to polarisation-altering properties of optical fibres. Here, we propose a flexible fibre-based polarimetric solution, and describe its design, fabrication, calibration, and initial feasibility demonstration in ex vivo tissue. The design is based on a flexible fibre bundle of six multimode optical fibres, each terminated with a distal polariser that ensures pre-determined output polarisation states. The resultant probe enables linear 3 × 3 Mueller matrix characterization of distal tissue. Potential in vivo Mueller matrix polarimetric tissue examinations in various directly-inaccessible body cavities are envisioned.