Many of the optical fibre cables comprised of 1310 nm zero-dispersion single-mode (SM) optical fibres installed in underground/conduits and access networks. Currently, there have been several studies on active network systems, which are designed to increase transmission capacity and flexibility. The application of active communication devices like the wavelength division multiplexing (WDM) systems, usually using SM optical fibre for transmission in the 1310–1625 nm window wavelength, proves very effective in decreasing the installation costs and high signal attenuations. It was imperative to examine the wavelength dependency of such transmission characteristics of SM optical fibre cables previously installed and in which several optical fibres were spliced. Analysis for such network has been performed and monitored over 1550–1625 nm wavelength. Results show that the spectral characterization and analysis of a long-haul optical network system operating at the 50-GHz-spaced 80-dense wavelength division multiplexing (DWDM)-channel can be used to identify the presence of faults.