Abstract.A review of specific features and methods of optical clearing and related interaction of light with tissues is presented. Physical and molecular mechanisms of immersion, compression, and photodynamic/photothermal optical clearing of some fibrous and cellular tissues are discussed. The possibility of efficient control of the tissue optical properties, particularly, the reduction of light scattering in tissues is demonstrated, which facilitates the increased efficiency of various optical visualisation methods (optical biopsy) used in medical purposes. © 2015 Samara State Aerospace University (SSAU).Keywords: tissue, optical clearing, optical diagnostics, imaging. 1, 404-413 (1997). 5. C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, "Penetration depth limits of in vivo confocal reflectance imaging," Appl. Opt. 37, 2749Opt. 37, -2754Opt. 37, (1998. 6. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications, SpringerVerlag, New York, NY, USA (2006). 7. R. Drezek, A. Dunn, and R. Richards-Kortum, "Light scattering from cells: finite-difference time-domain simulations and goniometric measurements," Appl. Opt. 38(16), 3651-3661 (1999). 8. K. Sokolov, R. Drezek, K. Gossagee, and R. Richards-Kortum, "Reflectance spectroscopy with polarized light:is it sensitive to cellular and nuclear morphology," Opt. Express 5, 302-317 (1999). 9. D. W. Leonard, and K. M. Meek, "Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma," Biophysical J. 72, 1382-1387 (1997). 10. A. G. Borovoi, E. I. Naats, and U. G. Oppel, "Scattering of light by a red blood cell," J. Biomed. Opt. 3, 364-372 (1998). 11. A. N. Yaroslavsky, A. V. Priezzhev, J. Rodriguez, I. V. Yaroslavsky, and H. Battarbee, "Optics of blood,"Chap. 2 in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, Ed., pp. 169-216, PM107 SPIE Press, Bellingham, WA, USA (2002). 12. G. Mazarevica, T. Freivalds, and A. Jurka, "Properties of erythrocyte light refraction in diabetic patients," J.Biomed. Opt. 7, 244-247 (2002). 13. M. Friebel, and M. Meinke, "Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration," Appl. Opt. 45(12), 2838-2842 (2006). Appl. Opt. 35(19), 3413-3420 (1996). 34. D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, "Imaging dermal blood flow through the intact rat skin with an optical clearing method," J. Biomed. Opt. 15, 026008 (2010 241. K. König, G. Flemming, and R. Hibst, "Laser-induced autofluorescence spectroscopy of dental caries lesion," Cell. Mol. Biol. 44, 1293-1300. 242. E. G. Borisova, T. T. Uzunov, and L. A. Avramov, "Early differentiation between caries and tooth demineralization using laser-induced autofluorescence spectroscopy," Lasers Surg. Med. 34, 249-253 (2004 -20(12), 1512-1516 (1984). 245. K. Konig, H. Schneckenburger, and R. Hibst, "Time-gated in vivo autofluorescence imaging of dental caries,"Cell. Mol. Biol. 45, 233-239 (1999). 246. E. Borisova, P. Tr...