Background:
Myelin oligodendrocyte glycoprotein antibody disease (MOGAD) is a demyelinating disorder that most commonly presents with optic neuritis (ON) and affects children more often than adults. We report 8 pediatric patients with MOG-associated ON and characterize focal optical coherence tomography (OCT) abnormalities over time that help distinguish this condition from the trajectories of other demyelinating disorders. These OCT findings are examined in the context of longitudinal visual function testing.
Methods:
This is a retrospective case series of 8 pediatric patients with MOG-associated ON who were referred for neuro-ophthalmic evaluation. Longitudinal data for demographics, clinical history, physical examination, and OCT obtained in the course of clinical evaluations were collected through retrospective medical record review.
Results:
Patients demonstrated acute peripapillary retinal nerve fiber layer (RNFL) thickening in one or both eyes, consistent with optic disc swelling. This was followed by steady patterns of average RNFL thinning, with 9 of 16 eyes reaching significantly low RNFL thickness using OCT platform reference databases (P < 0.01), accompanied by paradoxical recovery of high-contrast visual acuity (HCVA) in every patient. There was no correlation between HCVA and any OCT measures, although contrast sensitivity (CS) was associated with global thickness, PMB thickness, and nasal/temporal (N/T) ratio, and color vision was associated with PMB thickness. There was a lower global and papillomacular bundle (PMB) thickness (P < 0.01) in clinically affected eyes compared with unaffected eyes. There was also a significantly higher N:T ratio in clinically affected eyes compared with unaffected eyes in the acute MOG-ON setting (P = 0.03), but not in the long-term setting.
Conclusions:
MOG shows a pattern of prominent retinal atrophy, as demonstrated by global RNFL thinning, with remarkable preservation of HCVA but remaining deficits in CS and color vision. These tests may be better clinical markers of vision changes secondary to MOG-ON. Of the OCT parameters measured, PMB thickness demonstrated the most consistent correlation between structural and functional measures. Thus, it may be a more sensitive marker of clinically significant retinal atrophy in MOG-ON. The N:T ratio in acute clinically affected MOG-ON eyes in our study was higher than the N:T ratio of neuromyelitis optica (NMO)-ON eyes and similar to the N:T ratio in multiple sclerosis (MS)-ON eyes as presented in the prior literature. Therefore, MOG may share a more similar pathophysiology to MS compared with NMO.