Deep brain stimulation (DBS) is a functional neuromodulatory technique that involves the use of a neurostimulator to deliver electrical impulses to the brain. It primarily alleviates the motor symptoms in neurodegenerative diseases; however, it has been found beneficial in a multitude of neurological and psychiatric diseases, such as dystonia, essential tremor, Tourette syndrome, intractable pain, epilepsy, treatmentresistant depression, and obsessive-compulsive disorder. Nonmotor symptoms, such as neurobehavioral disorders, autonomic dysfunction, sleep dysfunction, and somatosensory dysfunction, play an important role in neurodegenerative diseases and have a significant impact on the quality of life. The effects of deep brain stimulation on these symptoms are not yet apparent, although early results are promising and warrant future investigations. The main problem in interpretation is the lack of studies in this field, as most have methodological issues or small sample sizes, which limit the strength of the evidence. However, it is clear that DBS has a promising future in the treatment of neurodegenerative diseases in general and will have a vital role in personalized medicine as functional neuroimaging and our understanding of brain physiology improve.2 becoming more apparent that neurostimulations will have an even more critical role in the future as our understanding of brain physiology and pathways improves with novel imaging techniques. This chapter includes the basics of how deep brain stimulation works, what are the nonmotor symptoms in neurodegenerative diseases, and what is the current evidence on the effects of DBS on nonmotor symptoms.
Deep brain stimulation 2.1 How does deep brain stimulation work?The system for DBS consists of three key components: an electrode that is placed in specific cerebral structures, an implantable pulse generator (IPG), and an extension that connects the two. Even though the exact mechanism is not yet known, the current hypothesis is that DBS works via excitation and inhibition of neurons and axons that are in proximity of the placed electrode [5]. The desired effect is achieved by changing the frequency of stimulations, as low-frequency stimulations most often excite nearby neurons [1], while high-frequency stimulations reduce local neuronal activity. Details of the implantation procedure are beyond the scope of this chapter, although it is useful to know that it is implanted stereotactically. In most cases, the stimulation is bilateral, although it is possible to stimulate unilaterally as well. The targets for stimulation are deep brain structures, as well as deep white matter tracts.A key benefit of DBS is the ability to adjust stimulations wirelessly via handheld devices to improve symptom relief and reduce possible side effects [5].Currently used method for DBS function is based on an open-loop system, which enables trained physicians to adjust various settings depending on the patient's condition [6]. This works adequately for most patients; however, changes in patien...