We study photoinduced optical responses of one-dimensional strongly correlated electron systems. The optical conductivity spectra are calculated for the ground state and a photoexcited state in the one-dimensional Hubbard model at half filling by using the exact diagonalization method. It is found that, in the Mott insulator phase, the photoexcited state has large spectral weights including the Drude weight below the optical gap. As a consequence, the spectral weight above the optical gap is largely reduced. These results imply that a metallic state is induced by photoexcitation. Comparison between the photoexcited and hole-doped states shows that the photoexcitation is similar to chemical doping.