Titanium oxynitride (TiN x O y ) thin films were deposited by low-pressure metal±organic CVD (LP-MOCVD) on (100) silicon, sapphire, and polycrystalline alumina substrates. Titanium isopropoxide (TIP) and ammonia were used as precursors. The influence of the growth temperature, ranking from 450 C to 750 C, was investigated by scanning electron microscopy (SEM), and electrical DC measurements. Rutherford back-scattering (RBS) measurements were used to determine the N/O ratio in the films. The surface observations of the deposited films showed two morphological transitions. The resistivity decreased with the growth temperature, while the nitrogen content increased. Moreover, for the highest deposition temperatures, the temperature dependence of the resistivity revealed a transition from a semiconducting to a metallic behavior. Finally, these electrical properties were correlated with the two morphological transitions.