As a key mechanism
underpinning many biological processes, protein
self-organization has been extensively studied. However, the potential
to apply the distinctive, nonlinear biochemical properties of such
self-organizing systems to biotechnological problems such as the facile
detection and characterization of biomolecular interactions has not
yet been explored. Here, we describe an
in vitro
assay
in a 96-well plate format that harnesses the emergent behavior of
the
Escherichia coli
Min system to
provide a readout of biomolecular interactions. Crucial for the development
of our approach is a minimal MinE-derived peptide that stimulates
MinD ATPase activity only when dimerized. We found that this behavior
could be induced via any pair of foreign, mutually binding molecular
entities fused to the minimal MinE peptide. The resulting MinD ATPase
activity and the spatiotemporal nature of the produced protein patterns
quantitatively correlate with the affinity of the fused binding partners,
thereby enabling a highly sensitive assay for biomolecular interactions.
Our assay thus provides a unique means of quantitatively visualizing
biomolecular interactions and may prove useful for the assessment
of domain interactions within protein libraries and for the facile
investigation of potential inhibitors of protein–protein interactions.