The Newtonian gravity constant G plays a central role in gravitational theory. Researchers have, since at least the 1980s, tried to see if the Newton gravitational constant can be expressed or replaced with more fundamental units, such as the Planck units. However, it was already pointed out in 1987 that this led to a circular problem; namely, that one must know G to find the Planck units, and that it is therefore of little or no use to express G through the Planck units. This is a view repeated in the literature in recent years, and is held by the physics’ community. However, we will claim that the circular problem was solved a few years ago. In addition, when one expresses the mass from the Compton wavelength formula, this leads to the conclusion that the three universal constants of G, h, and c now can be replaced with only lp and c to predict observable gravitational phenomena. While there have been several review papers on the Newton gravitational constant, for example, about how to measure it, we have not found a single review paper on the composite view of the gravitational constant. This paper will review the history of, as well as recent progress in, the composite view of the gravitational constant. This should hopefully be a useful supplement in the ongoing research for understanding and discussion of Newton’s gravitational constant.