BACKGROUND: Compared to benchtop ultrasound machines, mobile ultrasound machines require portable batteries when acquiring information regarding human tissues during outdoor activities. OBJECTIVE: A novel fisheye lens type was designed to address the charging issue where it is difficult to constantly track the sun. This method does not require the use of a mechanical motor that constantly tracks the sun to charge the portable batteries. METHODS: To obtain an optical solar power system, the numerical aperture (NA) and field angle must be increased. Therefore, we use the fisheye lens with the largest field angle. RESULTS: The NA of the designed fisheye lens system reaches 0.75, allowing light collection of approximately ± 48∘. Additionally, the efficiency ratio of the central and surrounding areas also satisfies more than 80% at a field angle of 85∘ and more than 70% at field angles of 85∘ to 90∘, respectively. CONCLUSIONS: We designed a novel fisheye lens for solar-powered mobile ultrasound machines used outdoors.