The plasma produced during vacuum arc remelting of a Zircaloy4 electrode has been investigated by optical emission spectroscopy. Spatial variations of plasma emission along the arc axis has been measured with a specific apparatus consisting of nine aligned optic fibres. The plasma consists of zirconium atoms, of singly and doubly charged zirconium ions and of chromium atoms. The non-observation of emissions of tin and iron particles, which are, with chromium, the three main alloy components of Zircaloy4, suggests that the concentrations of these two species in the plasma are negligibly small. Distribution temperatures of atomic and ionic species of the order of 1 eV and high ionization degree of the plasma (greater than 70%) have been determined. The similar decay of the line intensities of the various species with increasing axial distance from the cathode surface indicates that the plasma composition remains approximately unchanged within the interelectrode region. Synthesis of the spectroscopic results has shown that the emission of vapour into the plasma cannot be accounted for by a mechanism of metal volatilization from the cathodic and anodic liquid surfaces only. It also involves emission mechanisms occurring in the cathode spot region, like the expulsion of metal droplets which volatilize or the ejection of particles.