The results of flow birefringence measurements are reported for polymer solutions of moderate concentration subjected to a wide range of two‐dimensional flows. These flows were generated in a four‐roll mill which enables one to systematically vary the ratio of the vorticity to the rate of strain in the flow while holding the velocity gradient constant. It is shown that steady‐state birefringence data collected over a wide range of flow types can be correlated against the eigenvalue of the velocity gradient tensor, in agreement with criterion for strong and weak flows from model calculations. Transient birefringence measurements in which purely extensional flows were started from rest are also reported. It was observed that the birefringence went through a pronounced overshoot in time for two different polymer/solvent systems. Flow induced increases in the solution turbidity were also observed and the increased turbidity remained constant over a period of many hours after extensional flows were arrested. The birefringence, on the other hand, decayed to zero almost immediately after the flows were stopped. These changes in the turbidity suggest that crystallization of the polymer was occurring. The qualitative results of experiments are compared to recent network model calculations using the theory of Yamamoto for concentrated polymer systems. It is found that this model can predict qualitatively many of the experimental observations if the function describing the breakage of polymer chain entanglements is allowed to depend on the conformation of the polymer segments bridging the entanglements. In particular, this dependency of the entanglement breakage on the conformation of the network segments leads to a predicted overshoot of birefringence when purely extensional flows are started from rest. It is also demonstrated through this model that birefringence data taken over a wide range of flow types can be used to estimate the degree to which the network deforms affinely with the flow field.