State-of-the-art sensor-based sorting systems provide solutions to sort various products according to quality aspects. Such systems face the challenge of an existing delay between perception and separation of the material. To reliably predict an object’s position when reaching the separation stage, information regarding its movement needs to be derived. Multitarget tracking offers approaches through which this can be achieved. However, processing time is typically limited since the sorting decision for each object needs to be derived sufficiently early before it reaches the separation stage. In this paper, an approach for multitarget tracking in sensor-based sorting is proposed which supports establishing an upper bound regarding processing time required for solving the measurement to track association problem. To demonstrate the success of the proposed method, experiments are conducted for datasets obtained via simulation of a sorting system. This way, it is possible to not only demonstrate the impact on required runtime but also on the quality of the association