Pigments localized within cephalopod chromatophores are important for dermal coloration. When isolated and used as materials outside of the animal, the pigments can be processed as aerosols, illustrating a potential application for spray-on-coatings. The optical features of the pigment aerosols are difficult to analyze and require a method to correct for the particle charging and solvent effects accumulated during the aerosolizing process. We describe a method to account for these effects using an innovative iterative approach tied to retrieved refractive index (RI) values. RI retrievals were obtained via the best fit between the corrected, experimentally observed extinction efficiencies compared to those calculated by Mie theory for a specific RI at selected sizes. In addition to these retrievals, the impact of solvent on the particles’ optical properties was also examined via the Maxwell–Garnett mixing rule. Ultimately, we obtained a pigment RI with a real portion (n) of 1.66 (±0.05) representing a lower limit and an imaginary portion (k) of 0.13 (±0.08)i representing an upper limit for the generated aerosols. Combined, this approach advances techniques used to retrieve RI values that benefits both atmospheric chemistry and bio-inspired materials.