Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)
Simultaneous measurement of both magnetic field strength and temperature with a microfiber coupler based fiber laser sensor
ABSTRACTIn this paper we propose and investigate a novel magnetic field sensor based of a ring erbium-doped fiber laser combined with a fiber Bragg grating and a Sagnac loop containing a microfiber coupler and magnetic fluid. In addition to the magnetic field sensing capability, the proposed structure can simultaneously provide temperature information. Thanks to the dualring structure of the MFC-Sagnac loop and the FBG-assisted resonant cavity, the output has two distinct laser peaks. Experimentally demonstrated magnetic field sensitivity of one of the laser peaks is 15 pm/mT in the magnetic field range from 0 to 100 mT. The spectral position of the second laser peak is independent on the magnetic field but shifts towards long wavelengths with a sensitivity of 13 pm/°C.