This study develops a fault detection device for the fiber Bragg grating (FBG) sensing system and a fault detection method to realize the rapid detection of the FBG sensing system on airplanes. According to the distribution of FBG sensors on airplanes, the FBG sensing system is built based on wavelength division multiplexing (WDM) and space division multiplexing (SDM) technologies. Furthermore, the hardware and software of the fault detection device and the relevant FBG demodulator are studied in detail. Additionally, in view of the similar features of the healthy FBG sensor in the same measuring point, a rapid fault diagnosis method based on a synthetical anomaly index is proposed. The features (light intensity I, signal length L, standard deviation of original sampleand energy value in time-domain P) of FBG sensors are extracted. The aggregation center value of the above feature values is obtained through the loop iteration method. Furthermore, the separation degrees of features are calculated and then form the synthetical anomaly index so as to make an effective diagnosis of the state of the FBG sensor. Finally, the designed fault detection instrument and proposed fault detection method are used to monitor the 25 FBG sensors on the airplane, the results indicated that three faulty and two abnormal FBG sensors on the airplane are identified, showing the effectiveness of the proposed fault detection method.