As the Internet of Things (IoT) continues to find new applications, there is academic and industrial interest in expanding these concepts to the oceanic environment where data is traditionally challenging to communicate wirelessly, establishing an Underwater Internet of Things. One of the main challenges is rendering the network energy efficient to avoid regular retrievals for battery recharging processes, which can be expensive. The work proposes using low powered networks with multiple hops to reduce cost by avoiding the need for large transmitters, transformers and high rated components, thus rendering the technology cheaper and more accessible. The investigation found that even at low transmission powers a robust underwater acoustic network can be developed over hundreds of meters distance between hops, capable of carrying small packets of sensor data commonly used in Internet of Things applications. The successful delivery ratio and the signal-to-noise ratio metrics are used to assess the robustness of the network as a function of power. The analysis demonstrated that lower power levels exhibit higher energy efficiency when compared to their counterparts employing higher powers, aligning with the trends observed in commercial products, consuming significantly less energy than current single hop networks potentially allowing for longer life Underwater Wireless Sensor Networks.