This paper presents a miniature Fabry Perot twist/rotation sensor. The presented sensor consists of a single lead-in multicore fiber, which has four eccentrically positioned cores, a special asymmetrical microstructure, similar to a truncated cylinder, and an inline semi reflective mirror, all packed in a glass capillary housing. The perpendicular cut lead-in multicore fiber and the inline semi reflective mirror form four Fabry-Perot cavities. The optical path length of each Fabry-Perot interferometer is defined by the distance between mirrors, refractive index and twist/rotation angle of the microstructure in relation to the core positions in the lead in multicore fiber. Optical paths of Fabry-Perot Interferometers are modulated by a structure’s twist/rotation, change of structure length, or change of temperature. Each of these parameters modulate the optical path length of the individual interferometers in their own separate fashion, thus allowing independent measurements of twist/rotation, length/strain and temperature.