We demonstrate lensless imaging of three-dimensional phantoms of fluorescent nanodiamonds in solution. Magnetofluorescence imaging is employed, which relies on a dependence of the fluorescence yield on the magnetic field, and pervading the object with an inhomogeneous magnetic field. This field provides a field-free field line, which is rastered through the object. A 3D image of the object is obtained by imaging a set of 2D slices. Each 2D slice image is computed from a set of 1D projections, obtained under different projection directions, using a backprojection algorithm. Reconstructed images containing up to 36 × 36 × 8 voxels are obtained. A spatial resolution better than 2 mm is achieved in three dimensions. The approach has the potential for scalability.