The N-phenethyl analogues of (1R*,4aR*,9aS*)-2-phenethyl-1,3,4,9a-tetrahydro-2H-1,4a-propanobenzofuro[2,3-c]pyridin-6-ol and 8-ol and (1R*,4aR*,9aR*)-2-phenethyl-1,3,4,9a-tetrahydro-2H-1,4a-propanobenzofuro[2.3-c]pyridin-6-ol and 8-ol, the ortho-(43) and parahydroxy e-(20), and f-oxide-bridged 5-phenylmorphans (53 and 26) were prepared in racemic and enantiomerically pure forms from a common precursor, the quaternary salt 12. Optical resolutions were accomplished by salt formation with suitable enantiomerically pure chiral acids or by preparative HPLC on a chiral support. The N-phenethyl (−)-para-e enantiomer (1S,4aS,9aR-(−)-20) was found to be a μ-opioid agonist with morphine-like antinociceptive activity in a mouse assay. In contrast, the N-phenethyl (−)-ortho-f enantiomer (1R,4aR,9aR-(−)-53) had good affinity for the μ-opioid receptor (Ki = 7 nM) and was found to be a μ-antagonist both in the [ 35 S]GTP-γ-S assay and in vivo. The molecular structures of these rigid enantiomers were energy minimized with density functional theory at the level B3LYP/6-31G* level, and then overlayed on a known potent μ-agonist. This superposition study suggests that the agonist activity of the oxide-bridged 5-phenylmorphans can be attributed to formation of a seven membered ring that is hypothesized to facilitate a proton transfer from the protonated nitrogen to a proton acceptor in the μ-opioid receptor.