Biological tissue has a complex structure and exhibits rich spectroscopic behavior. There has been no tissue model until now that has been able to account for the observed spectroscopy of tissue light scattering and its anisotropy. Here we present, for the first time, a plum pudding random medium (PPRM) model for biological tissue which succinctly describes tissue as a superposition of distinctive scattering structures (plum) embedded inside a fractal continuous medium of background refractive index fluctuation (pudding). PPRM faithfully reproduces the wavelength dependence of tissue light scattering and attributes the "anomalous" trend in the anisotropy to the plum and the powerlaw dependence of the reduced scattering coefficient to the fractal scattering pudding. Most importantly, PPRM opens up a novel venue of quantifying the tissue architecture and microscopic structures on average from macroscopic probing of the bulk with scattered light alone without tissue excision. We demonstrate this potential by visualizing the fine microscopic structural alterations in breast tissue (adipose, glandular, fibrocystic, fibroadenoma, and ductal carcinoma) deduced from noncontact spectroscopic measurement. Elecron. 26, 2166-2185 (1990). 6. S. L. Jacques, "Optical properties of biological tissues: a review," Phys. Med. Biol. 58, R37-R61 (2013). 7. J. M. Schmitt and G. Kumar, "Optical scattering properties of soft tissue: A discrete particle model," Appl. Opt. 37, 2788-2797 (1998) 1310-1312 (1996). 13. A. J. Einstein, H.-S. Wu, and J. Gil, "Self-affinity and lacunarity of chromatin texture in benign and malignant breast epithelial cell nuclei," Phys. Rev. Lett. 80, 397-400 (1998