Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Many researchers have reported on the preparation and characterization of thin films. The prepared thin films could be used in lasers, cathodic ray tubes, solar cells, infrared windows, ultraviolet light emitting diodes, sensors, supercapacitors, biologic applications, and optoelectronic applications. The properties of these thin films strongly depend on the deposition techniques. Throughout the years, many investigations into the production of various types of thin films (by using the successive ionic layer adsorption and reaction (SILAR) method) were conducted. This method attracts interest as it possesses many advantages when compared to other deposition methods. For example, large area depositions could be carried out in any substrates at lower temperatures via inexpensive instruments; moreover, a vacuum chamber is not required, it has an excellent growth rate, and the unique film properties could be controlled. In this work, metal sulfide, metal selenide, metal oxide, and metal telluride were deposited on substrates by using the SILAR method. According to the findings, both thick and thin films could be synthesized under specific conditions during the experiment. Additionally, the results showed that the number of deposition cycles, rinsing times, immersion times, and concentrations of the precursors affected the crystallinities, grain sizes, film thicknesses, surface roughness, and shapes of the obtained films. These films could be used in solar cell applications with high power conversion efficiency due to the appropriate band gap value and high absorption coefficient value.
Many researchers have reported on the preparation and characterization of thin films. The prepared thin films could be used in lasers, cathodic ray tubes, solar cells, infrared windows, ultraviolet light emitting diodes, sensors, supercapacitors, biologic applications, and optoelectronic applications. The properties of these thin films strongly depend on the deposition techniques. Throughout the years, many investigations into the production of various types of thin films (by using the successive ionic layer adsorption and reaction (SILAR) method) were conducted. This method attracts interest as it possesses many advantages when compared to other deposition methods. For example, large area depositions could be carried out in any substrates at lower temperatures via inexpensive instruments; moreover, a vacuum chamber is not required, it has an excellent growth rate, and the unique film properties could be controlled. In this work, metal sulfide, metal selenide, metal oxide, and metal telluride were deposited on substrates by using the SILAR method. According to the findings, both thick and thin films could be synthesized under specific conditions during the experiment. Additionally, the results showed that the number of deposition cycles, rinsing times, immersion times, and concentrations of the precursors affected the crystallinities, grain sizes, film thicknesses, surface roughness, and shapes of the obtained films. These films could be used in solar cell applications with high power conversion efficiency due to the appropriate band gap value and high absorption coefficient value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.