“…Traditional CD methods PBCD Bruzzone et al [7], Celik [8], Deng et al [9], Wu et al [10], Huang et al [11], Benedek et al [14], and Bazi et al [18] OBCD Ma et al [20], Zhang et al [21], Gil-Yepes et al [22], Qin et al [23] Deep learning CD methods FB-DLCD Sakurada et al [26], Saha et al [27], Hou et al [28], El Amin et al [29], Zhan et al [31], Zhang et al [32], Niu et al [33], and Zhan et al [34] PB-DLCD Gong et al [36], Arabi et al [38], Ma et al [40], Zhang et al [41], Khan et al [42], Daudt et al [44], Wang et al [45], Wiratama et al [46], Zhang et al [47], Mou et al [49], and Gong et al [50] IB-DLCD Lei et al [52], Daudy et al [53], Lebedev et al [54], and Guo et al [55] To address the above-mentioned issues, we proposed a novel end-to-end method based on improved UNet++ [58], which is an effective encoder-decoder architecture for semantic segmentation. A novel loss function was designed and an effective deep supervision (DS) strategy was implemented, which are capable of capturing changes with varying sizes effectively in complex scenes.…”