Chiral smectic liquid crystals exhibit a series of phases, including ferroelectric, antiferroelectric, and ferrielectric commensurate structures as well as an incommensurate Sm-Calpha* phase. We carried out an extension of the phenomenological model recently presented by Hamaneh and Taylor based on the distorted-clock model. The salient feature of this model is that it links the appearance of phases to a spontaneous microscopic twist: i.e., an increment alpha of the azimuthal angle from layer to layer. The balance between this twist and an orientational order parameter J gives the effective phase. We introduce a second orientational order parameter I , which physical meaning comes from the macroscopic polarization; the effect of an applied electric is also studied. We derive phase diagrams and correlate them to our experimental results under field showing the sequence of phases versus temperature and electric field in some compounds.