2021
DOI: 10.1515/joc-2021-0172
|View full text |Cite
|
Sign up to set email alerts
|

Optical SNR estimation using machine learning

Abstract: A technique for the estimation of an optical signal-to-noise ratio (OSNR) using machine learning algorithms has been proposed. The algorithms are trained with parameters derived from eye-diagram via simulation in 10 Gb/s On-Off Keying (OOK) nonreturn-to-zero (NRZ) data signal. The performance of different machine learning (ML) techniques namely, multiple linear regression, random forest, and K-nearest neighbor (K-NN) for OSNR estimation in terms of mean square error and R-squared value has been compared. The p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?