By applying a scattering-wave theory, the electromagnetic response of an arbitrary array of multiple slits perforated on a metallic film and filled with different slit dielectric materials can be studied in an analytical way. Here, the wavelength-dependent splitting of a light beam into two by asymmetrically filled slits in a metal film using intra-and inter-slit dual-wave interferences is fully explored. We consider a triple-slit structure perforated on a gold film, where the middle slit is used for the surface-plasmon excitation by a narrow Gaussian beam while the two side slits are used for the detection of a transmitted surface-plasmon wave propagated from the middle opaque slit either at a particular wavelength or at double that wavelength, respectively. For this proposed simple structure, we show that only one of the two side observation slits can be in a passing state for a particular wavelength, but the other blocked slit will change to a passing state at double that wavelength with a specific design for the slit depth, slit dielectric, and inter-slit distance in the deep sub-wavelength regime. In this sense, surface-plasmon mediated light transmission becomes wavelength sensitive in our model, and a single light beam can be separated into two according to its wavelength in the transverse direction parallel to the array. This provides us with a unique way for direct optical reading in the near-field region using a non-spectroscopic approach.