We show, that in contrast to the free electron model (standard BCS model), a particular gap in the spectrum of multiband superconductors opens at some distance from the Fermi energy, if conduction band is composed of hybridized atomic orbitals of different symmetries. This gap has composite superconducting-hybridization origin, because it exists only if both the superconductivity and the hybridization between different kinds of orbitals are present. So for many classes of superconductors with multiorbital structure such spectrum changes should take place. These particular changes in the spectrum at some distance from the Fermi level result in slow convergence of the spectral weight of the optical conductivity even in quite conventional superconductors with isotropic s-wave pairing mechanism.PACS numbers: 74.20.-z Theories and models of superconducting state, 74.20.Pq Electronic structure calculations