The service evolution and the rapid increase in traffic levels fuel the interest toward switching paradigms enabling the fast allocation of Wavelength Division Multiplexing WDM channels in an on demand fashion with fine granularities (microsecond scales). For this reason, in the last years, different optical switching paradigms have been proposed: optical-packet switching (OPS), optical-burst switching (OBS), wavelength-routed OBS, etc. Among the various all-optical switching paradigms, OPS attracts increasing attention. Owing to the high switching rate, Semiconductor Optical Amplifier (SOA) is a key technology to realize Optical Packet Switches. We propose some Optical Packet Switch (OPS) architectures and illustrate their realization in SOA technology. The effectiveness of the technology in reducing the power consumption is also analyzed. The chapter is organized in three sections. The main blocks (Switching Fabric, Wavelength Conversion stage, Synchronization stage) of an OPS are illustrated in Section 2 where we also show some examples of realizing wavelength converters and synchronizers in SOA technology. Section 3 introduces SOA-based single-stage and multi-stage switching fabrics. Finally the SOA-based OPS power consumption is investigated in Section 4